优迪智联产品介绍书

OPTRA® Platform™ | 设备 / 生产 / 质量

2025-08-07 (V2.1)

优迪智联有限公司 | UDMTEK Co., Ltd.

目录

1 概要

1) 需求

2) 解决方案

3) 预期效果

4) 应用案例

5) 主要特点

6) 系统架构图

- 2 功能
 - 1) 通用
 - 2) 设备
 - 3) 生产
 - 4) 质量

附录

- 1) 规格
- 2) 配置
- 3) 常见问答

概要

1

需求

解决方案

预期效果

应用案例

主要特点

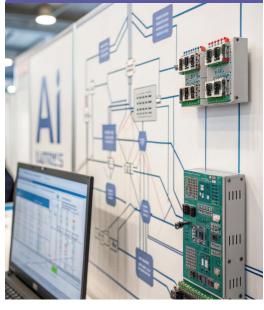
系统架构图

需求

从数据采集到分析与监控,实现一体化管理。

需求

高速一体化大数据采集


异构设备数据整合应用

基于AI的决策支持

系统可扩展性与集成能力

快速且高一致性地采集设备与 支持在多种设备环境中运行, 工艺数据

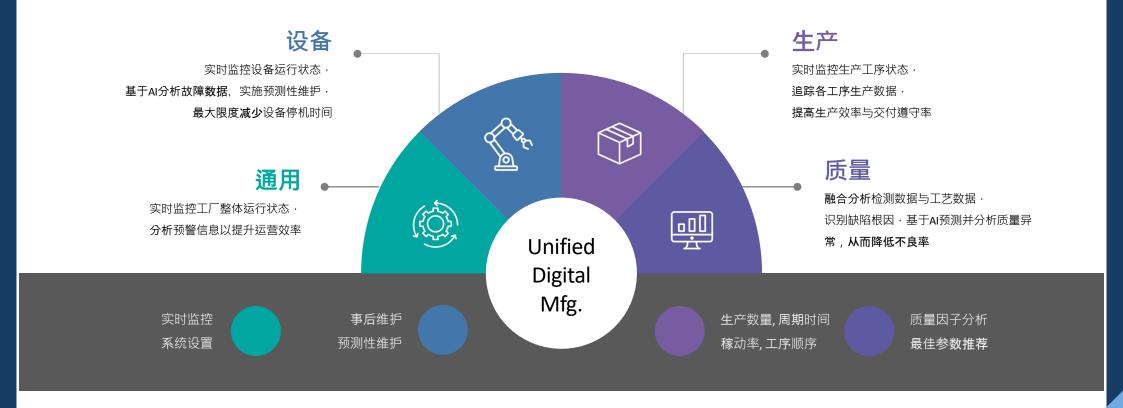
- 每秒采集数百个标签数据
- 通过双重存储机制防止数据丢失与错误 支持Modbus、OPC-UA等多种通信协议
- 基于实时数据库提升分析效率

实现高效数据融合

- 直接采集主流PLC/传感器数据
- 实现跨设备通信架构差异的实时整合

结合深度学习与生成式AI, 提供质量与工艺洞察

- 基于历史数据提前预测质量异常
- 实时识别关键影响因子
- 提供设备最优运行条件与操作建议


灵活对接现有系统, 支持平滑升级与扩展

- 与MES系统联动,自动采集生产履历
- 与ERP、QMS系统集成,实现质量异常后 的即时流程优化
- 支持企业级渐进式智能分析与整合部署

解决方案

统一数字化制造平台

可诊断、分析并解决设备、生产与质量问题的 Unified Digital Manufacturing Platform

预期效果

覆盖全生命周期的 OPTRA® Platform™

设备 (Equipment)

AS-IS

- 以事后维护为主,响应效率低下
- 故障原因难以定位
- 不定时停机发生

TO-BE

- 引入基于AI的预测性维护
- 提前探测并预防故障
- 提升设备稼动率, 最大限度减少停机时间

从事后响应转向AI预测性维护, 最大限度减少停机时间

生产 (Production)

AS-IS

- 实时掌握牛产状况受限
- 生产数量与稼动率监控不足
- 存在交期延误风险

TO-BE

- 实时监控生产数据
- 优化生产效率与稼动率
- 提高交期遵守率与工艺效率

以数据驱动监控突破实时掌握的限制, 提升生产效率与交期遵守率

藤 质量 (Quality)

AS-IS

- 识别不良原因耗时
- 难以及时发现质量异常
- 不良率管理存在瓶颈

TO-BE

- 基于AI进行不良预测与原因分析
- 及时预警质量异常并响应
- 降低不良率,提升质量水平

通过AI预测与条件推荐, 改善延迟的不良原因分析

应用案例: 汽车制造商 H 公司

网络架构建设

SMART FACTORY SOLUTION

应用现场现状

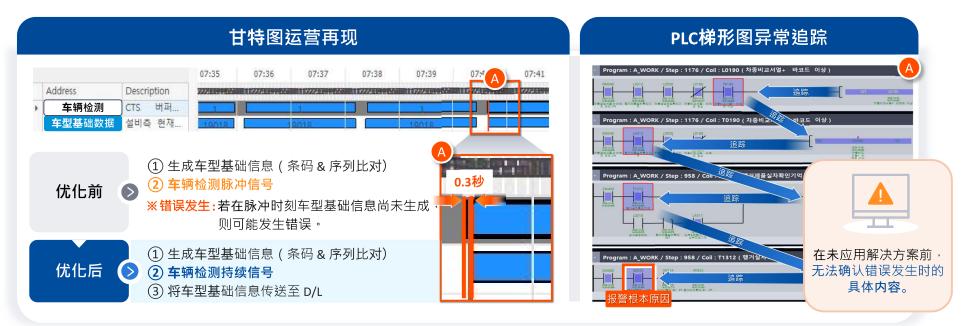
公司	产线	台数	类型
	蔚山1工厂	13	KIOSK+PC
	蔚山2工厂	11	KIOSK
	蔚山3工厂	15	PC
国内	蔚山4工厂	7	KIOSK+PC
H公司	蔚山5工厂	11	KIOSK+PC
	蔚山6工厂	18	KIOSK+PC
	牙山1工厂	1	KIOSK
	光州1工厂	1	KIOSK
国内	华城4工厂	3	KIOSK
K公司	光明4工厂	1	KIOSK
	美国 阿拉巴马 工厂	7	KIOSK
	土耳其 工厂	3	KIOSK
	巴西 工厂	4	KIOSK
国内	俄罗斯 工厂	4	KIOSK
H公司	捷克 工厂	8	KIOSK
	印度尼西亚工厂	1	KIOSK
	印度 工厂	6	KIOSK
	美国 萨凡纳 工厂	18	KIOSK
	美国 佐治亚 工厂	11	KIOSK
	墨西哥 工厂	2	KIOSK
国 内 K公司	印度 工厂	2	KIOSK
N 44 -D	中国 工厂	2	KIOSK
	斯洛伐克 工厂	1	KIOSK

正在面向国内外 60条以上 产线, 推进推广与扩展应用

稼动率监控系统

以工厂为单位进行实时稼动率汇总,联动分析待工产线,并支持 Excel 导出

标准PLC监控系统


PLC 모니터링 시스템

以单条产线为单位·监控运营状态、Tip余量和非稼动时间· 并进行数据汇总与分析

应用案例: 汽车制造商 H 公司

*虚假报警: 指设备与工艺本身无异常,但仍被系统错误触发的报警。

分类	H 公司	H 公司	H 公司		
异常内容	车型 输入错误发生	*燃油箱设备报警(虚假报警)	*防升装置工序报警(虚假报警)		
发生频率	3次/天	9次/小时	13次/分钟		
异常原因	由于车型基础信息生成延迟・导致信息空白错误。	由于 车 辆进入传感器位置异常, 导致误触发。	PLC逻辑中包含不必要的逻辑, 导致误报。		
解决措施	通过设置延迟报警及异常处理规则进行解决。	通过调整传感器位置进行解决。	通过修改PLC逻辑进行解决。		

应用案例: 汽车零部件供应商 M 公司

*Drop Lift: 是一种用于将车身上下搬运至不同楼层的升降设备,通过 Drop Lift 皮带的运行进行驱动。

应用案例: 汽车零部件供应商 P 公司

汽车

设备

生产

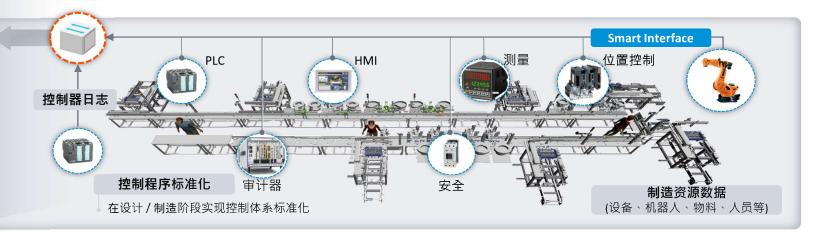
新量

Smart Factory

现场监控系统

实时监控/异常检测(在线)

实时监控 (OEE、生产、UPH、异常等)/ 异常检测 (铆接 PUSH 通知)


运营优化分析 (离线)

停机原因分析及 UPH 重点管理 (Excel 报告)

应用案例: 汽车零部件供应商 s 公司

设备

生产

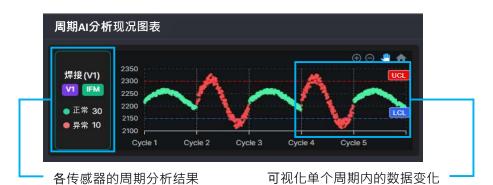
质量

周期分析现状

通过按周期的良品与不良品数量可视化,结合各传感器的蜡烛图分析异常分布 **> 实现工艺稳定性诊断,制定设备维护及质量应对策略**

基于周期自动分类异常模式,提前检测质量下降

基于AI的不良影响度分析



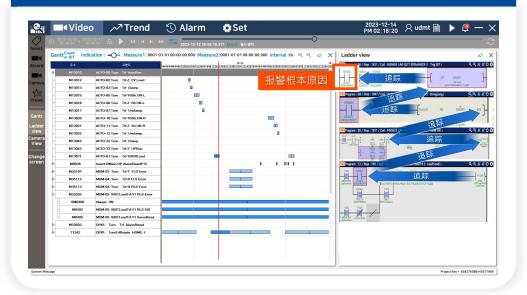
识别对不良品影响较大的传感器,优先安排维护

→ 提升质量稳定性 + 最大化维修效率 + 高级预测维护

基于可解释AI的影响度分析、定量呈现原因因素

周期详细分析

通过传感器周期单元分析,确认异常发生时间点


分类	优化前	优化后				
异常检测时间	异常发生后检测	异常发生前的预先预测				
不良原因推断	基于操作员经验的手动推断	自动提取主要影响因素 (可解释AI)				
应对速度	平均超过2小时	基于实时通知的即时应对				
数据利用	基于事件的片段式利用	按周期单位精炼分析				

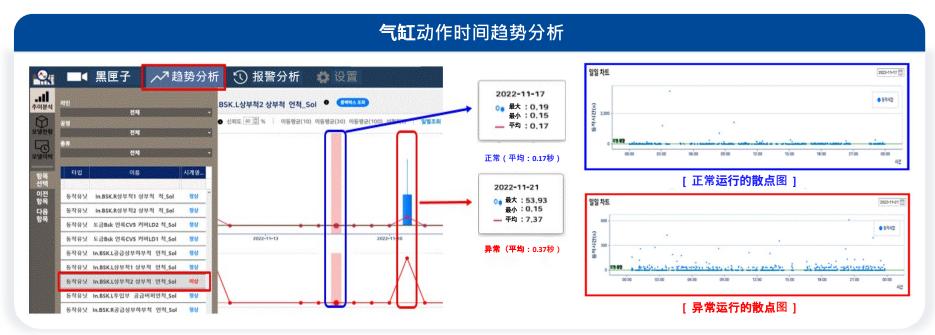
应用案例:二次电池制造商 L 公司

PLC 甘特图分析 — 工艺优化 Stopper下降后Lift上升 7.4秒 气缸下降完成后Cell投入 3.6秒 发生0.5秒延迟 延迟时间优化 投入Cell后上升完成 3.6秒 → 3.1秒 2.4秒 缩短0.5秒 1.9秒 延迟时间优化 CLAMP下降, Loader前进 3.6秒 → 3.1秒 缩短0.5秒 1.8秒 CLAMP上升, Loader后退 动作优化带来的C.T.变化 动作优化带来的产值变化 优化0.7秒 2.508 亿韩元 22.5 2,470 22 -2,420 2.432 2,370 C.T(秒) 单位(百万韩元) ■未应用动作分析设计■应用动作分析设计

OPTRA Black-box 运行再现 – PLC 甘特图 / 梯形图 异常追踪

 分类
 L公司

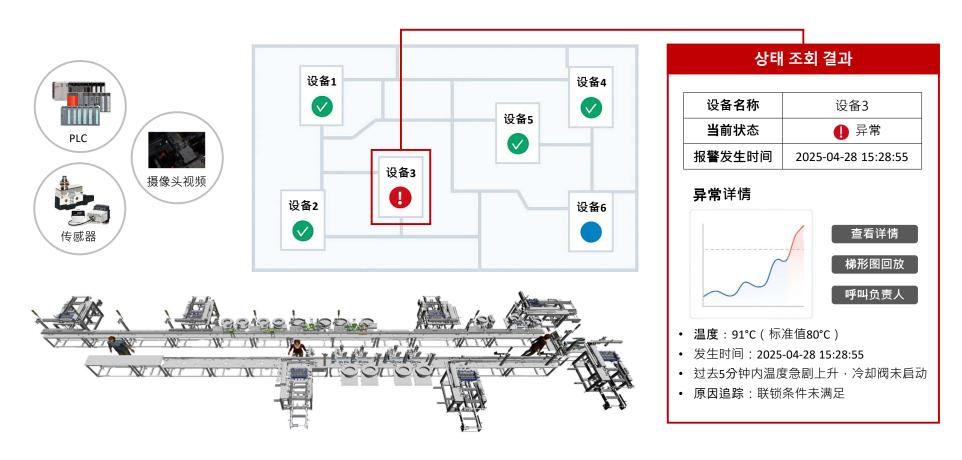
 异常内容
 TURN TRANSFER 移载机发生无预警停机


 发生频率
 6次/天(※损失成本 = 生产成本×非稼动时间×发生频率)

 异常原因
 由于传感器误动作导致无预警停机,电压下降引发传感器误动作

 解决措施
 通过调整传感器继电器接线,防止误动作

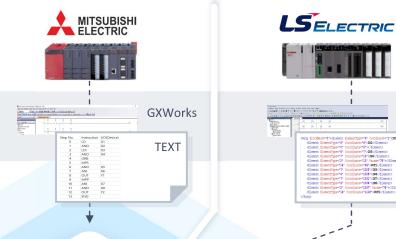
应用案例:显示器制造商 s 公司



工厂设备状态·一目了然 设备实时数据监控

- 实时采集并监控工厂内所有设备的运行状态、速度、温度、压力等数据
- 支持移动端及远程访问,实现跨地点工厂状态监控
- 异常发生时即时报警并定位原因 → 快速响应现场

不同PLC, 也能如同一体 —— 设备数据整合的起点 基于机器码解析的设备数据标准化与统一管理


SIMATIC

TEXT

- 自动将来自不同厂商PLC的数据转换为统一的通用语言
- 统一异构设备间的信号体系,提高分析与运维的便捷性

SIEMENS

• 基于转换后的机器码,可通过一个程序实现设备状态监控

in Hansusse

相关专利

10-1132358 MULTIPLE PLC SIMULATION SYSTEM

10-2414933

Method for generating flow-chart using static data of PLC program information

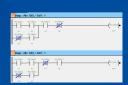
10-2509859

Apparatus and method for extracting common command information from PLC ladder information

指令列表 (Instruction List)

PLC型号 ▶

PLC程序 ▶


提取的

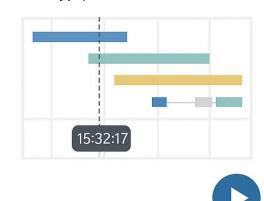
- 将不同PLC的指令自动转换 为 统一的通用语言
- 将指令与数据结构封装为 类对象,便于处理

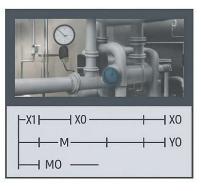
XG5000 XML

梯形图视图(Ladder Diagram View)

- 自主开发的梯形图可视化界面
- 所有用户均可轻松理解的UI/UX
- 触点状态(On/Off)在图上实时显示

在复杂的控制结构中追踪问题源头

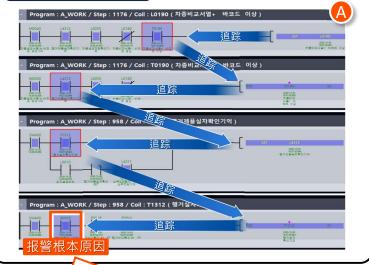

通过追踪控制逻辑,查找设备异常的根本原因


- 按时间顺序回放 PLC 控制逻辑, 重现问题发生时刻
- 利用甘特图和梯形图可视化信号流动过程
- 按层级逐步追踪控制信号路径,深入分析根本原因

相关专利 10-2535019 ANOMALY DETECTING METHOD IN THE SEQUENCE OF THE CONTROL SEGMENT OF AUTOMATION FACILITY USING GRAPH AUTOENCODER 10-2535018 GRAPH NEURAL NETWORK BASED PLC CONTROL LOGIC AUTOMATIC INSPECTION METHOD

选择问题发生时间点并回放工艺数据

异常现象:因冷却泵未启动,触发温度超限报警

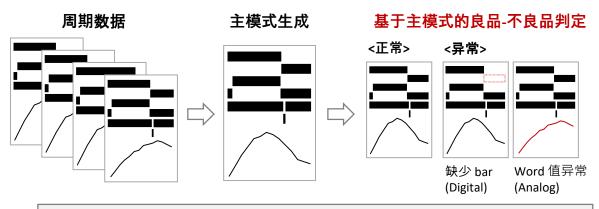

冷却泵启动条件

流量传感器

运行命令开关

温度传感器

追踪原因**条件**


冷却水阀在规定时间内未打开 发现冷却水供应逻辑中的 PLC 输出异常

(I/O 状态: 未从 OFF 变为 ON)

以模式为标准,区分正常与异常

基于主模式分析的工艺异常检测与分类

- 收集重复的相同作业周期,自动建立正常的主模式 (Master Pattern)
- 将新采集的数据与主模式对比,自动判断是否异常
- 同时分析数字(ON/OFF)信号与模拟传感器值,提高检测精度
- 应用基于 AI 的分类模型,实现正常/**异常模式的自**动分类与学习

从历史采集数据中生成正常主模式,通过对比预测周期缺陷

<基于深度学习的分类模型>

- CNN Autoencoder:通过无监督学习方式提取图像数据特征,实现异常检测

<周期学习内容>

- 学习多个相同周期的特征,生成主模式
- Bit 类型信号:周期内 bar 数量、每个 bar 的动作时间及顺序等
- Word 类型信号:周期内 Word 值的变化(统计值等)

相关专利

10-2220139

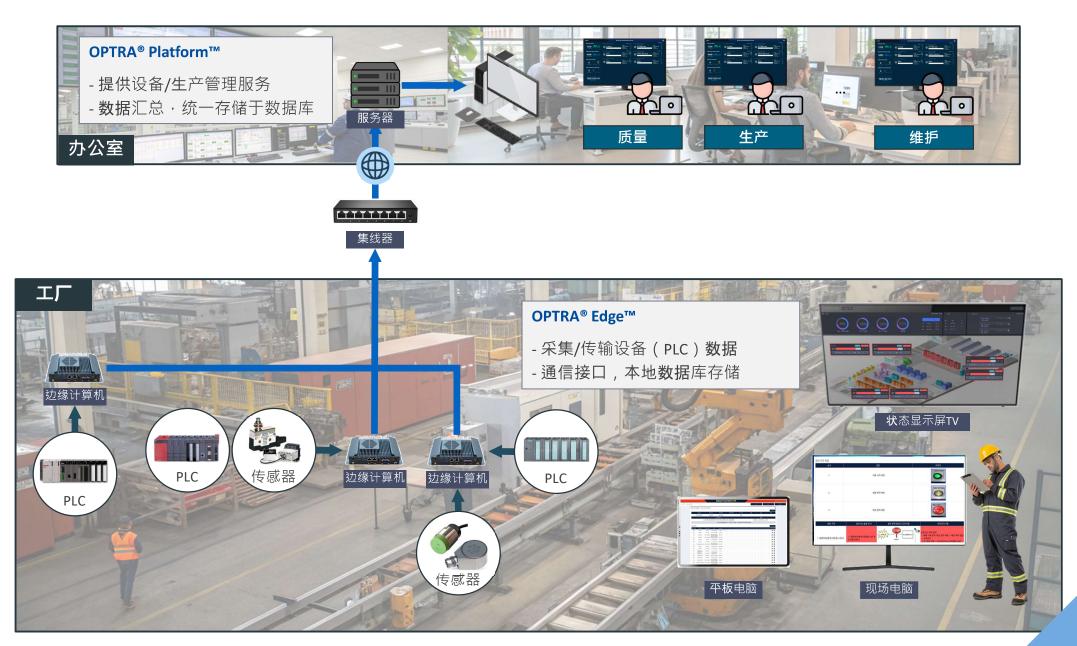
Apparatus and method generating master pattern of PLC control logic

10-2471829

MASTER STATE GENERATION METHOD BASED ON GRAPH NEURAL NETWORK FOR DETECTING ERROR IN REAL TIME

10-2835613

Apparatus and method for Process Analysis based on a CNN Autoencoder using Control Logic and analog Data



以用户为中心的信息可视化 用户定制化仪表盘设计

- 根据用户角色和关注信息, 灵活配置个性化仪表盘
- 综合展示工艺、设备、质量等多项指标
- 响应式设计, 适配PC、平板和大屏幕
- 提升信息检索速度,支持决策制定

系统架构图

功能

2

通用

设备

生产

质量

按工厂-产线-工序-设备分级的统一运营状态监控

工厂监控

• 按产线监控循环状态

• 按产线监控生产状态

按工厂-产线-工序-设备分级的统一运营状态监控

产线监控

• 监控产线稼动率与生产状态

OEE、时间稼动率、性能稼动率、良品率

生产数量监控

各产线的报警状态

• 工序 / 设备状态监控 (稼动率、产量、循环、报警)

• 采集器(Edge)连接状态显示

- ● 正常采集
- • 异常采集
- □ 采集标签数量
- 全部标签: PLC程序中使用的所有标签 (接点)
- 采集标签:用户设置为采集中的标签

▶ 支持仪表板自定义

92806

- 当前进行中的工序循环时间
- 工序进度状态(循环、报警发生、异常模式)

功能 通用 ○ 管理 ● 报警

多工序报警的统一管理

报警状况

实时监控工序报警情况

• 报警状态柱状图

• 最近报警列表

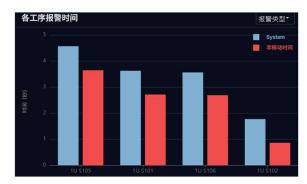
▲ 显示所选产线所属所有工序的报警列表

多工序报警的统一管理

报警统计:基于统计的报警信息

(如Top5、梯形图追踪等)

报警列表:查看所有报警信息


报警查询

查看历史报警的详细信息

•报警统计-报警状况

报警总览 Top5 1U S105 0 1U S101 0 1U S106 ● 1U S102 显示全部报警状态 各标签现况 Top5 [0]M1499[1] (0]M1099[1] (0]M1599[1] [0]M1199[1]

报警Top5 (按标签、报警类型)

- ▲ 按条件查询报警时间
- 按工序、品项、标签

•报警统计 - 条件筛选报警时间/次数

- ▲ 按**条件**查询报警次数
- 按工序、品项、标签

1U -

			I _z	报警次数最多项 (Top1)			报警时间最多项 (Top1)				
工序 =	报警次数 =	持续时间(秒) ≡	非稼动时间(秒) =	名称		报警次数		名称		持续时间(秒) =	
1U S105		4.57	3.64	1-U-S105-TotalError				1-U-S105-TotalError		4.57	
1U S101		3.62	2.71	1-U-S101-TotalError		4		1-U-S101-TotalError		3.62	
1U S106		3.56	2.68	1-U-S106-TotalError		4		1-U-S106-TotalError		3.56	
1U S102		1.77	0.86	1-U-S102-TotalError				1-U-S102-TotalError		1.77	

报警查询 🛭

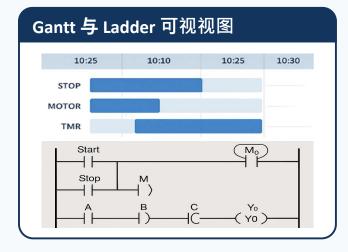
- ▲ 报警列表查询
- 按工序汇总显示报警现状, 一目了然

设备

通过数据预测设备状态,提前预防故障。

通过分析设备部件状态、重复模式、趋势预测与控制信号流程,可早期检测故障前兆,精准诊断故障根本原因。

设备状态摘要


MTR-03 (主驱动电机)

▲ 警告 - 振动数值超限

剩余寿命: 35% (基于电机轴承)

最近报警: 振动异常 (2025-05-26 14:20)

保养记录: 预防性维护完成 (2025-04-18)

- 可回放控制信号的时间流程
- 选择停机时间点→查看相关条件→跟踪原因逻辑
- 通过 Gantt 图与梯形图理解逻辑流程
- 自动标识异常模式,并同步日志记录

信号追踪

PLC 触发条件 与信号追踪

→ 实现逻辑层级化分析

趋势预测

预测设备振动、温度、 电流等时序数据变化

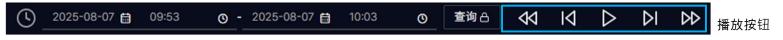
→ 提前报警异常迹象

模式分析

对比正常周期 与异常周期

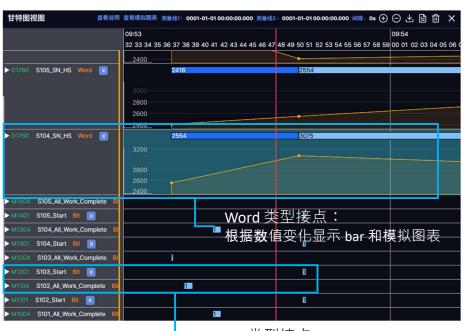
→ 提前识别异常动作

寿命分析


分析部件使用历史、 预测剩余寿命

→ 优化更换周期

设备异常报警及异常征兆的信号详细分析


信号分析

通过 Gantt/Ladder/逻辑图表,分析设备控制 PLC 与传感器数据

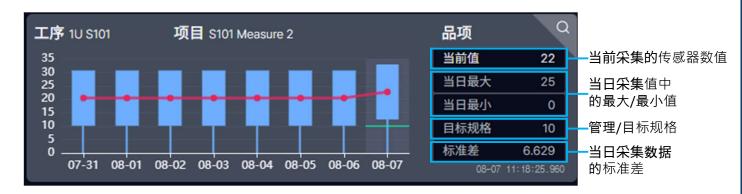
▲ 选择需要查询的接点与时间段,点击"播放"按钮后可查看 Gantt 视图 / Ladder 视图回放

• Gantt 视图

- ▶ 加载完整的 PLC 梯形图程序
- 可根据设置的 Depth 查询所有下层接点

Bit 类型接点: 根据 On/Off 状态显示 bar

通过分析设备各部件的状态变化,提前预测异常征兆

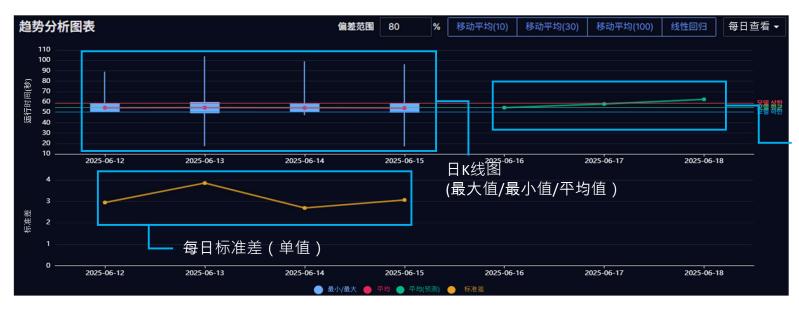

趋势总览

汇总并展示工艺中所有设备部件的数据趋势(Trend)情况

• 趋势总览分析

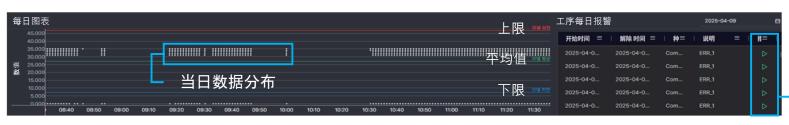
▲ 显示工艺中所有趋势分析结果 点击"查看"跳转至趋势分析页面 • 实时状态查询

▲ 显示每日数据的 K 线图,以及实时数据可视化



通过分析设备各部件的状态变化,提前预测异常征兆

趋势分析


通过分析选定接点的趋势变化,预测故障征兆

• **趋势分析图表** ▼ 基于历史数据生成趋势线

基于历史数据预测未来趋势

• **日度图表** ▼ 展示点击日期当日的数据分布、上下限与平均值

点击"播放" 可跳转至信号分析画面

功能 设备 ○ 信号 ○ 趋势 ● 模式

通过定义重复周期中的正常模式,以此为基准检测异常

模式分析(历史查询) 对所选工序的历史模式与基准模式进行详细比对

• 模式对比

▲ 点击的 bar 信息 (异常类型、模式对比)

通过定义重复周期中的正常模式,以此为基准检测异常

模式分析(模式编辑) 可对已生成的模式进行手动编辑

① 历史记录查询 ① 模式编辑

• 模式编辑

▼ 点击想要编辑的 bar 进行数值修改

当前值	
开始时间	0.892 s
持续时间	11,811.168 ms
变更值	←
受史诅	
开始时间	0.892 s
持续时间	11811.168 ms
	应用

- 开始时间:信号开始的时间, 关联 bar 的位置 - 持续时间:信号持续的时间, 关联 bar 的长度 • 学习条件修改

学习日志数量	10
最小发生比率	80%
允许同时运行时间	200 ms
容许值类型	ratio 🕶
容许基准值	20%
启用异常值剔除	•

- ▲ 修改与模式生成相关的设置
- 修改设置后将重新生成模式

功能

生产

○ KPI ○ 周期 ○ 流程

生产

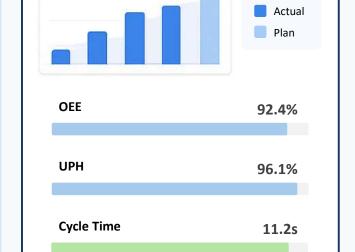
以数据为基础优化流程,实现无瓶颈的生产体系。

通过实时分析工艺流程与生产指标, 可及早识别瓶颈环节,最大化产线效率。

各工序分析结果

组装工序

周期


🛑 出现延迟

平均周期增加 12%

模式

Real-Time Production Dashboard

KPI 查询

综合显示生产实绩、设备稼动率、工序信息

→ 分析实绩差异并采取应对措施

(1)

周期分析

可视化展示各工序的周期时间及变化趋势

→ 检测异常周期

工序流程监控

自动追踪实时工序进度状态

→ 查看作业状态与进度

基于采集数据,分析各工序与周期的生产效率

生产现况

已选产线的生产数量及生产现况数据汇总(实时)

• 整体生产现况

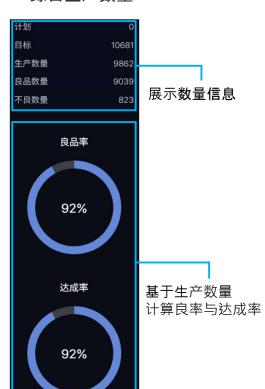
▼ 计划 / 目标 / 生产 / 良品数量与达成率 (OEE指标:时间稼动率、性能稼动率、良品率等)

• 单位别生产现况列表

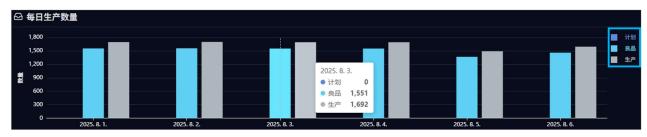
▼ 在产线内按照不同单位维度分别展示各项指标

日期↓≡□	日程 ≡ □	品项 ≡ □	开始 ≡ □	结束 ≡ □	OEE(≡	时间 ≡	稼动 ≡ ∣	负载 ≡ ∣	性能 =	良品 ≡	良品 ≡ ∣	不良 ≡	达成 ≡	计划 ≡ ∣	目标 ≡	生产 ≡
2025-08	Shift1	None	08:00:0	14:00:0	84	100	21591.5	21600.6	92	92	387	36	92	0	459	423
2025-08	Shift2	None	15:27:3	22:00:0	85	100	23539.1	23546.2	92	92	423	39	92	0	500	462
2025-08	Shift3	None	22:00:0	08:00:0	85	100	35981.4	36000.3	93	92	649	59	93	0	765	708
2025-08	Shift1	None	10:55:2	14:00:0	84	100	11080.8	11080.8	92	92	199	18	92	0	235	217
2025-08	Shift2	None	14:00:0	22:00:0	85	100	28791.5	28798.7	93	92	520	47	93	0	612	567
2025-08	Shift3	None	22:00:0	08:00:0	85	100	35984.3	35998.7	92	92	648	59	92	0	765	707

基于采集数据,分析各工序与周期的生产效率


生产查询

按工序/周期查询计划、目标、生产、良品数量及达成率(历史数据)


① 生产数量 ② 设备综合效率

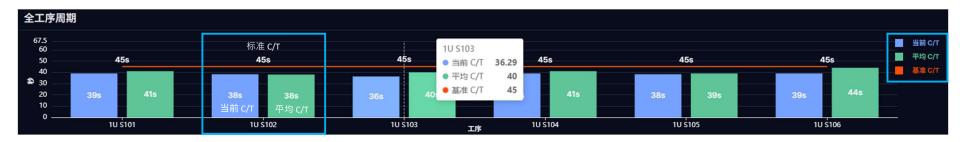
通过菜单切换可查看设备效率 (按月、周、日)

• 综合生产数量

• 日别生产数量

- ▲ 日别生产数量柱状图
- 每日计划生产量、总产量及良品量分别可视化

- ▲ 日别生产统计列表
- 展示计划/目标、生产/良品/不良数量及达成率


基于周期时间综合分析,洞察工艺运行现况并实现优化

周期现况

不同产线工序级别的综合数据监控

• 整体工序周期状态

▼ 显示所有工序的实时、平均值及标准周期信息

- 平均 C/T, 当前 C/T: 使用柱状图展示
- 标准 C/T: 使用折线图展示

• 工序周期状况

• 设备周期状况 ▼ 查看所选工序的所有设备

功能 生产 ○ КРІ ● 周期 ○ 流程

基于周期时间综合分析,洞察工艺运行现况并实现优化

周期查询

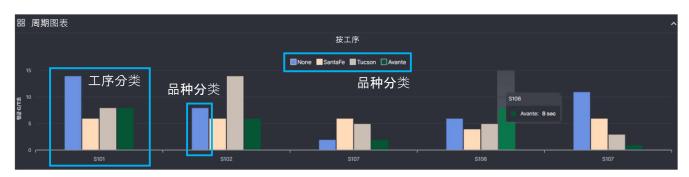
查看历史周期的综合信息

2025-04-10 - 2025-04-10 🖨 조회 공장

- 可设定时间段与筛选条件

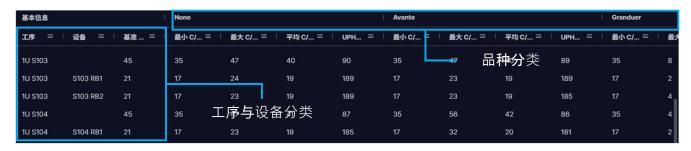
• 延迟工序识别

延迟发生工序 Top5


\$\instylesize{\text{S101}} \\ \text{\$\text{S102}} \\ \text{\$\text{\$\text{S106}}} \\ \text{\$\text{\$\text{S107}}} \end{aligned}

延迟时间工厂 Top5

\$\instylesize{\text{S101}} \\ \text{\$\text{\$\text{S102}}} \\ \text{\$\text{\$\text{S105}}} \\ \text{\$\text{\$\text{S106}}} \\ \text{\$\text{\$\text{S105}}} \\ \text{\$\text{\$\text{S106}}} \\ \text{\$\text{\$\text{S107}}} \end{aligned}


- 按延迟发生次数和累计时间分类,显示Top5工序

• 周期图表分析

▲ 显示按工序或品项分类的平均周期柱状图

• 周期列表

▲ 展示周期日志列表

功能 生产 ○ КРІ ○ 周期 ● 流程

定义重复循环中的工序顺序,并以此为基准进行异常检测

流程现状

查看已生成流程模式的现状/状态(工序模式、用户模式)

• 各工序模式现状

S101_AutoStart

S101_Unit_1_Run

S101_Unit_1_Location

S101_Unit_1_2_Location

S101_Unit_1_3_Location

S101_Unit_1_Return_Home

▲ 当前周期模式的逻辑

三 实时工序模式(None)

• 模式分析结果列表

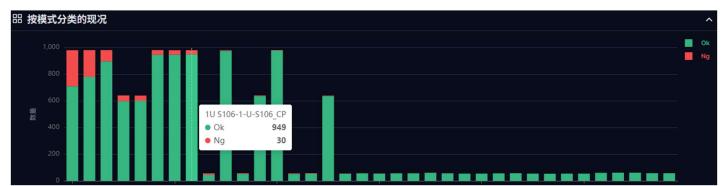
▲ 查看已生成模式的OK/NG现状

点击查询跳转至模式分析画面(可对比该周期模式与基准模式)

定义重复循环中的工序顺序,并以此为基准进行异常检测

流程查询

整体流程模式的综合现状


• 全部模式现状

全部工序中发生的模式 正常/异常比例

可通过筛选进行 特定模式间的比较

▲ 各模式OK/NG现状

工序	≡	模式类型	≡ 1	模式名称	≡	开始时间	≡	持续时间(ms)	≡ 1	结果	=	查询=
1U S101		工序		1-U-S101_CP		2025-08-07 00:00:24.628		41291		Ok		Q
1U S104		工序		1-U-S104_CP		2025-08-07 00:00:24.628		47240		Ng		Q
1U S103		工序		1-U-S103_CP		2025-08-07 00:00:24.628		37192		Ok		Q
1U S105		工序		1-U-S105_CP		2025-08-07 00:00:24.628		41291		Ok		Q
1U S102		工序		1-U-S102_CP		2025-08-07 00:00:24.628		38298		Ok		Q
1U S102		工序		None		2025-08-07 00:00:24.628		38298		Ok		Q

▲ 各模式OK/NG现状列表

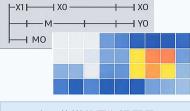
点击查询跳转至模式分析画面 (可对比该周期模式与基准模式)

功能

质量

通过分析工艺数据,实现无缺陷的品质管理。

利用 AI 对工艺与检测数据进行综合分析, 提前识别缺陷发生条件,并导出最优应对方案。


品质异常场景

异常检测

温度高于 68°C + 速度低于 0.4m/s → 不良率激增

- 实时分析传感器数据
- 检测超出基准值的条件
- 通过 AI 模型识别异常信号

不良原因分析

由于传送装置润滑不足 **引发的热集中现象**

- 查询该时间点的工艺条件
- 多变量因子分析
- 与历史相似不良进行对比→找出主要原因●

◆ 仪表板显示

- 可视化不良预测概率 与异常发生区间
- 实时推送异常告警
- 作业员进行应对

报警功能

自动生成预测异常时间 与报警类型

通过弹窗或邮件实时通知操作员

→ 缩短响应时间

预测功能

基于工艺条件 预测缺陷发生的可能性

进行主要影响因素分析 (可解释AI)

→ 实现工艺条件优化

通过预测不良并分析原因,提供最优工艺条件

不良预测

预测不良发生,并导出主要影响因子

• 不良预测

▲ 实时工艺分析显示

▲ 影**响**质量的前三项关键数据

• 实时数据查询

▲ 显示采集数据现况

▲ 数据详情信息

- 历史数据查询
- ▼ 用户设定查询期间内的工艺状况

查看详情

功能

通过预测不良并分析原因,提供最优工艺条件

条件推荐

质量

提供减少不良的最优工艺参数

• 目标值设定

- ▲ 设定工艺目标值
- 推荐实现目标值的最优条件

• 最优条件推荐

- ▲ 弹出推荐参数窗口
- 推荐达到目标的最佳工艺条件
- 应用推荐参数后可调整设备设置

可查询推荐参数的应用历史记录▶

附录

3

规格

配置

常见问答

规格(设备)

OPTRA® Edge™

硬件+软件一体化工业迷你PC

硬件 规格

言	息	规格

处理器(CPU)	Intel® Core™ i5-1145GRE vPro® (2.60 GHz up to 4.10 GHz)
内存(RAM)	16 GB DDR4-3200MHz
存储(Storage)	1 TB SSD M.2 2230 PCIe TLC
显卡	集成显卡 (Intel Iris Xe)
显示器	HDMI, DP, USB-C (Thunderbolt 4)
音频	MIC-in/Line-out with Realtek® ALC662
LAN	2x RJ-45 (1Gb + 2.5Gb)
USB	2x USB 3.2, 2x USB-C 3.2
串口	2x RS232/422/485 + 4x RS232 (3-wire)
输入电源	100V ~ 240V AC
环境条件	-20°C ~ +60°C
尺寸	179(L) x 88(W) x 51.5(H) mm
重量	1.02 Kg

软件 规格

信息	规格
操作系统(OS)	Windows 11 (64 Bit)
通信协议	OPC DA/UA, Modbus TCP/RTU, MQTT
数据库(DB)	MySQL
采集通道数	基于PLC,建议最大3000个接点
采集周期	最小1毫秒以上(详见下一章)

规格(性能)

采集周期

(单位: ms, 1Word = 16Bit)

口地	+n =u			数据采集量			4 24
品牌	机型	100Word	500Word	1,000Word	5,000Word	10,000Word	备注
Mitaubiabi	Q	6.17	8.11	16.93	61.96	119.01	
Mitsubishi	R	5.01	5.23	10.89	35.77	67.76	
	S7-300	1.94	6.74	11.16	54.81	132.74	
Ciamana	S7-400	5.4	12.02	19.82	98.29	275.86	
Siemens	S7-1200	9.63	30.52	50.74	238.39	-	
	S7-1500	10.5	10.35	10.41	29.98	59.96	OPC UA 通信
	XGT - XGI	2.14	4.02	8.18	43.11	86.49	
LS	XGT - XGK	2.07	3.92	8	41.57	83.17	
	XGB	10.32	41.75	84.57	426.09	851.16	
Omron	Sysmac CJ2	4.99	21.13	44.33	215.65	438.55	
Fuji	SPH 2000/3000	20.36	62.58	104.66	441.49	-	
AB	ControlLogix	51.41	50.98	55.88	101.77	239.37	OPC UA 通信

※测试方法:每项测试进行3次,每次3分钟,取平均值

配置

分类	项目	规格	金额	备注
软件	OPTRA [®] Edge™	数据采集/加工/存储,采集设备及接点数量限制	500万韩元(含硬件)	每个PLC 1份许可
	OPTRA [®] Platform™	设备 / 生产 / 质量 类型中任选购买 , Site License	2000万~5000万韩元	每个站点 1份许可
硬件	数据采集PC	安装OPTRA® Edge™ 软件、操作系统、数据库	-	
	集成服务器	安装OPTRA® Platform™ 软件、操作系统、数据库	根据建设范围确定	
服务	开发费	针对追加需求的开发人工费用(如有必要)		
	施工费	追加传感器安装及网络施工费用(如有必要)	另行咨询	
	差旅费	国内工厂免费,海外工厂收费		
	培训费	用户培训	(免费)	

常见问答

是否支持云环境运行?

本系统采用 On-premise 架构,在客户内部网络(内网) 部署数据采集 PC 和集成服务器。若客户内部安全政策允许 也可部署在云环境中。

需要从 PLC 获取哪些数据?

Q2. 系统会 实时采集 PLC 日志**数据** 进行使用。若使用高级功能,则需从 PLC 程序中导出资料,并通过设置功能上传。不同 PLC 品牌导出方式略有差异,但流程简便,易于上传。

PLC 数据采集速度可能低于标准吗?

采集速度会受到 PLC 连接设备数量、是否使用交换机、网 络配置等影响。连接设备越多·Edge PC 的采集速率可能下降。建议通过现场实际使用测试效果最为可靠。

建设周期大约需要多长?

本产品由 Edge PC 和中央服务器组成。在硬件库存准备就绪的情况下,可立即进行交付与安装。所需时间将根据安装的 Edge PC 数量而定。通常包括硬件与软件的安装及程序设定,可在1个月内完成整个部署。

能否与其他系统(MES、ERP等)集成?

Q5. 若客户已有 MES、ERP 等系统,可实现数据共享。可接收现有系统数据,或由本系统导出处理后輸出。需客户原系统供应商提供 DB、API 等接口支持。

单台 Edge PC 可采集的接点有数量限制吗?

建议每台 Edge PC 连接一台 PLC, 采集 最多约 3,000 个接点。具体需结合现场实际情况评估,建议现场实测以确定准确配置。

报警发生时是否支持短信、邮件等方式通知?

Q7. 若客户已有通知服务系统,可与本产品集成使用。若无,我们也可通过 定制开发 添加相关功能,实现短信、邮件推送等报警通知。

AI 模型初期训练需要多长时间?

系统需进行初始周期数据训练·建议至少采集 1,000 个以上 周期数据。若一个周期为 60 秒,总体训练时间约为 16 小时。

谢谢